Real-time hyperspectral processing for automatic nonferrous material sorting
نویسندگان
چکیده
The application of hyperspectral sensors in the development of machine vision solutions has become increasingly popular as the spectral characteristics of the imaged materials are better modeled in the hyperspectral domain than in the standard trichromatic red, green, blue data. While there is no doubt that the availability of detailed spectral information is opportune as it opens the possibility to construct robust image descriptors, it also raises a substantial challenge when this high-dimensional data is used in the development of real-time machine vision systems. To alleviate the computational demand, often decorrelation techniques are commonly applied prior to feature extraction. While this approach has reduced to some extent the size of the spectral descriptor, data decorrelation alone proved insufficient in attaining real-time classification. This fact is particularly apparent when pixel-wise image descriptors are not sufficiently robust to model the spectral characteristics of the imaged materials, a case when the spatial information (or textural properties) also has to be included in the classification process. The integration of spectral and spatial information entails a substantial computational cost, and as a result the prospects of real-time operation for the developed machine vision system are compromised. To answer this requirement, in this paper we have reengineered the approach behind the integration of the spectral and spatial information in the material classification process to allow the real-time sorting of the nonferrous fractions that are contained in the waste of electric and electronic equipment scrap. © 2012 SPIE and IS&T. [DOI: 10.1117/
منابع مشابه
Design, Development and Evaluation of an Orange Sorter Based on Machine Vision and Artificial Neural Network Techniques
ABSTRACT- The high production of orange fruit in Iran calls for quality sorting of this product as a requirement for entering global markets. This study was devoted to the development of an automatic fruit sorter based on size. The hardware consisted of two units. An image acquisition apparatus equipped with a camera, a robotic arm and controller circuits. The second unit consisted of a robotic...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملطبقهبندی پتانسیلهای عمل نرونی با استفاده از شبکههای عصبی شعاعی
Background: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR) of the spikes. The mai...
متن کاملHardware accelerated real time classification of hyperspectral imaging data for coffee sorting
Hyperspectral imaging has been proven to be a viable tool for automated food inspection that is non-invasive and on-line capable. In this contribution a hardware implemented Self-Organizing Feature Map with Conscience (CSOM) is presented that is capable of on-line adaptation and recall in order to learn to classify green coffee varieties as well as coffee of different roast stages. The CSOM sho...
متن کاملHyperspectral data processing algorithm combining Principal Component Analysis and K Nearest Neighbours
A processing algorithm to classify hyperspectral images from an imaging spectroscopic sensor is investigated in this paper. In this research two approaches are followed. First, the feasibility of an analysis scheme consisting of spectral feature extraction and classification is demonstrated. Principal component analysis (PCA) is used to perform data dimensionality reduction while the spectral i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Electronic Imaging
دوره 21 شماره
صفحات -
تاریخ انتشار 2012